Conjonction logique

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Conjonction et logique (homonymie).

Cet article possède des paronymes, voir Λ, ʌ, ߍ et ^.

En logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧.

Règles de la conjonction

| ]

En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.

Table de vérité

| ]

En logique classique, l'interprétation du connecteur ∧ peut être faite par une table de vérité :

P Q P ∧ Q
faux faux faux
faux vrai faux
vrai faux faux
vrai vrai vrai

Propriétés de la conjonction

| ]

Soient P, Q et R trois propositions.

Généralement

| ]

En logique, on a les propriétés suivantes :

Idempotence du « et »
(PP) ⇔ P
Commutativité du « et »
(PQ) ⇔ (QP)
Associativité du « et »
((PQ) ∧ R) ⇔ (P ∧ (QR))
Distributivité de « ou » par rapport à « et »
(P ∨ (QR)) ⇔ ((PQ) ∧ (P ∨ R))
Distributivité de « et » par rapport à « ou »
(P ∧ (QR)) ⇔ ((PQ) ∨ (PR))
La disjonction des négations implique la négation d'une conjonction
¬ (PQ) ⇔ ((¬ P) ∨ (¬ Q))
La négation d'une disjonction implique la conjonction des négations
¬ (PQ) ⇔ ((¬ P) ∧ (¬ Q))
Loi de non contradiction,
P ∧ (¬ P) ⇔ F
Modus ponens
(P ∧ (PQ)) ⇒ Q

En logique classique

| ]

De plus, en logique classique:

La négation d'une conjonction implique la disjonction des négations
¬ (PQ) ⇒ ((¬ P) ∨ (¬ Q))
La conjonction de négations implique la négation d'une disjonction
((¬ P) ∧ (¬ Q)) ⇒ ¬ (PQ)
Distributivité de « ou » par rapport à « et »
((PQ) ∧ (P ∨ R)) ⇒ (P ∨ (QR))
Distributivité de « et » par rapport à « ou »
(P ∧ (QR)) ⇒ ((PQ) ∨ (PR))

On peut voir la quantification universelle comme une généralisation de la conjonction.

Notes et références

| ]

Articles connexes

| ]
  • Disjonction logique
  • Fonction ET
  • Lettre minuscule latine v culbuté

Liens externes

| ]
  • Enciclopedia De Agostini

wikipédia, wiki, livre, livres, bibliothèque, article, lire, télécharger, gratuit, téléchargement gratuit, mobile, téléphone, android, ios, apple, téléphone portable, pc, web, ordinateur, Informations sur Conjonction logique, Qu’est-ce que Conjonction logique ? Que signifie Conjonction logique ?

0 réponses

Laisser une réponse

Vous voulez participer à la discussion ?
N'hésitez pas à contribuer !

Écrire une réponse

Les champs obligatoires sont marqués par une étoile *